# Sensitivity to New Scalar Production and Decay in GMSB Scenarios with the $\gamma_{\textit{delayed}}$ + MET Final State

Vaikunth Thukral, Ziqing Hong, David Toback, and Randy White for the Delayed Photon Group

Department of Physics and Astronomy Texas A&M University College Station, Texas 77843 whiteran16@neo.tamu.edu

July 31, 2014

CDF Physics Meeting

Delayed Photon Limits R. White

#### Overview

- Introduction Theory and Analysis Overview
- Signal Modelling
- Setting Limits
  - The slope of the timing distribution as a function of the model parameters
  - N<sup>95</sup> limits as a function of Slope
  - Acceptances
  - Cross Section Limits
- Conclusions

### GMSB and Delayed Photons

- In Gauge Mediated SUSY Breaking (GMSB) models the Lightest SUSY Particle (LSP) is the Gravitino ( $\tilde{G}$ )
- Often the next-to lightest SUSY particle is often the  $\tilde{\chi}_1^0$  and can decay to  $\gamma$  and  $\tilde{G}$  (MET)
- The  $\tilde{\chi}_1^0$  may have a lifetime on the order of a few nanoseconds. In this case, the photon's arrival time at the calorimeter would be delayed relative to expectations → Delayed photon  $(\gamma_{Delaved})$  PRD 70 114032 (2004)



 In Light Neutralino and Gravitino (LNG) models, all but the LSP and NLSP are inaccessible at colliders. However, new scalar production can produce  $\tilde{\chi}_1^0$  pairs with a large production cross section. PLB 702, 377(2011)

#### Delayed Photons and the Timing Signature



Using a simple time of flight equation, the time associated with the initial interaction( $t_i$ ), and the time of arrival at the detector( $t_f$ ) we can construct the variable  $\Delta t$  to separate delayed photons from other sources.

$$\Delta t = (t_{\mathsf{f}} - t_{\mathsf{i}}) - \frac{(|\vec{x}_{\mathsf{f}} - \vec{x}_{\mathsf{i}}|)}{c}$$

N.B.- A promply produced photon with a perfect detector has  $\Delta t$ =0, photons from heavy, long-lived particles have  $\Delta t > 0$ .

Delayed Photon Limits R. White 4/1

### The Exclusive $\gamma + MET$ Final State and the Signal Region

3 distinct backgrounds estimated by data-driven methods (described in detail in CDF Notes 9924, 9171, and 8636)





- Right Vertex: Resolution of the detector(0.65ns) and scaled to match the data in the region below the signal region
- Wrong Vertex: Shape has an RMS of 2.0 ns, but with a non-zero mean
- Cosmic rays: Estimated from large time regions
- Model-indepdent result published in PRD 88, 031103(R)(2013) and updated since publication, see talk by Vaikunth Thukral.
- No evidence for new physics.

Delayed Photon Limits R. White 5 / 16

# Previously: $N^{95}$ Limit as a Counting Experiment

# If the Signal Region is grouped into one bin, it results in a background of $310\pm26$ events

#### Can set simple limits:

- Can write Cross Section Limit as:  $\sigma^{95} = \frac{N^{95}}{I * A}$
- Can find the expected N<sup>95</sup> limit assuming uncertainies on the acceptance and luminosity
- Take 6% uncertainty on L and 20% on the acceptance (see PRD(CDF 9171)/PRL(CDF 8636))

• Setting L=A=1 when using MCLimit gives  $\sigma^{95} = N^{95}$ , which we will show later to be extremely useful



The expected  $N^{95}$  here is 69 events at 20% uncertainty on the acceptance. The bounds are only do to the pseudo-experiments run by MClimit.

Delayed Photon Limits R. White 6/1

### GMSB Signal Timing Distribution

New scalar production is well modelled using three parameters:  $M_{\varphi}, M_{\tilde{\chi}^0_1}$ , and  $\tau_{\tilde{\chi}^0_1}$ 

• Studies show that the  $\Delta t$  distribution for the signal typically looks like an exponential in the 2-7ns region. (JHEP09 (2013)041, PRD 70(2004) 114032, and PRD 78 032015/PRL 99 121801,)



Pick a benchmark point of  $M_{\varphi}=125{
m GeV}, M_{{ ilde\chi}_1^0}=55{
m GeV}, \ {
m and} \ au_{{ ilde\chi}_1^0}=5{
m ns}$  (explained later).

N.B.- Results today have signal simulated using Pythia and PGS with the EMTiming modelled with a custom Monte Carlo (CDF 8636, CDF 9171)

# Timing distribution as a function of the model parameters: Slope

Studies show it is straight forward to estimate the slope as a function of  $M_{\varphi}$ ,  $M_{\tilde{\chi}_1^0}$ , and  $\tau_{\tilde{\chi}_1^0}$  produces a finite slope:



- ullet Contour of constant slope for  $M_{arphi}=125\,\,{
  m GeV}$
- ullet Similar results for other arphi masses
- ullet Slope goes up as  $M_{ ilde{\chi}_1^0}$  approaches  $rac{M_{arphi}}{2}$

Delayed Photon Limits R. White 8/16

#### Data with the Modelled Timing Distributions

- Use control regions to estimate the backgrounds in the signal region as a function of time (CDF Notes 9924, 9171, and 8636)
- Use MC limit to estimate the 95% C.L. upper limit on the number of signal events ( $N^{95}$ ) for each slope (model parameter)



Delayed Photon Limits R. White 9/10

## Results: N<sup>95</sup> Limit verses Slope

- Since each  $M_{\varphi}, M_{\tilde{\chi}_{1}^{0}}$ , and  $au_{\tilde{\chi}^0_1}$  gives a known slope value, can set  $N^{95}$  vs. Slope
- Again the Cross Section Limit  $\sigma$  will be:

$$\sigma = \frac{N^{95}}{I * A}$$



For simplicity agian we have used 6% uncertainty on L and 20% on the acceptance (see PRD(CDF 9171)/PRL(CDF 8636)). But even with these assumptions we see that the limits have been improved drastically. More on the acceptance next.

#### Acceptances



- To estimate the acceptance, we follow JHEP09 (2013)041 and use a customized PGS for each mass/lifetime configuration (will be fairly close... move to CDFsim in progress)
- $\begin{array}{l} \bullet \ \ \mbox{Highest Acceptance for roughly:} \\ M_{\tilde{\chi}_1^0} \approx \frac{M_{\varphi} 24 \mbox{GeV}}{2} \ \mbox{and} \\ \tau_{\tilde{\chi}_1^0} \approx 5 \text{-} 10 \ \mbox{ns} \end{array}$
- ullet Correlates to the best balance between having the  $\tilde{\chi}_1^0$  decay within the detector
- Produces photons that are measured in the signal region (consistent with PRD 2008 (CDF 9171))

Delayed Photon Limits R. White 11/1

#### 95% Confidence Limits on Cross Section

Convert to cross section limits: Use L=6.3 $fb^{-1}\pm6\%$ ,  $\sigma_{Acc}=20\%$  (Acc. from previous slide), and each  $M_{\varphi},M_{\tilde{\chi}_{1}^{0}},$  and  $\tau_{\tilde{\chi}_{1}^{0}}$  combination gives a  $N^{95}$  which we can plug in to get  $\sigma_{95}$ .

Note the limits are optimal around 5ns as in previous studies (PRD(CDF 9171)/PRL(CDF 8636)).



Delayed Photon Limits R. White 12/1

#### Cross Section Limits for Variable Scalar Masses

Next fix  $au_{\tilde{\chi}_1^0}=5$ ns: get limits as a function of  $M_{\varphi}$  and  $M_{\tilde{\chi}_1^0}$ .

Note: better cross section limits for larger  $\varphi$  masses as expected.

Optimal cross section limits for  $M_{{ ilde \chi}_1^0} pprox rac{M_{arphi} - 24 {
m GeV}}{2}.$ 



Delayed Photon Limits R. White 13/16

#### Ratio of Observed to Expected Cross Section

Compare  $\sigma^{95}$  to simple model of scalar production with BR=100%. SM Higgs is 1 pb at 125GeV.



#### Plan:

Move to higher  $\tilde{\chi}_1^0$  and  $\varphi$  masses to find our optimal sensitivity

Currently uses the approximation that  $\sigma_{Production} = \frac{(125 \text{ GeV})^3}{(M_{\varphi})^3}$ . Moving to using PLB 702 (2011) 377382 (thanks to Tom Junk).

Delayed Photon Limits R. White 14/1

#### Conclusions

- We have preliminary limits on new scalar production and decay via  $\varphi \to \tilde{\chi}^0_1 \tilde{\chi}^0_1 \to \gamma_{delayed} + \textit{MET}$
- $oldsymbol{eta}$  Limits as a function of  $M_{arphi}, M_{ ilde{\chi}_1^0},$  and  $au_{ ilde{\chi}_1^0}$
- Cross Section Limits appear optimal for  $au_{ ilde{\chi}_1^0} \approx 5$ ns and  $M_{ ilde{\chi}_1^0} pprox rac{M_{arphi}-25}{2}$
- Sensitivity appears best at larger masses than we have already considered  $\to$  Now simulating larger  $\varphi$  mass points
- The rest of the data with final acceptances and uncertainties to come using CDFsim (in progress)
- Plan: Bless these results, then publish a PRL on these results as well as a full PRD on the analysis methods which are all new and not spelled out in the PRD-RC.

Delayed Photon Limits R. White 15/3

# Backup Slides

Delayed Photon Limits R. White 16/10